initial commit taken from gitlab.lrz.de

This commit is contained in:
privatereese
2018-08-24 18:09:42 +02:00
parent ae54ed4c48
commit fc05486403
28494 changed files with 2159823 additions and 0 deletions

22
node_modules/react-native/Libraries/fishhook/LICENSE generated vendored Executable file
View File

@@ -0,0 +1,22 @@
// Copyright (c) 2013, Facebook, Inc.
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name Facebook nor the names of its contributors may be used to
// endorse or promote products derived from this software without specific
// prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

75
node_modules/react-native/Libraries/fishhook/README.md generated vendored Executable file
View File

@@ -0,0 +1,75 @@
# fishhook
__fishhook__ is a very simple library that enables dynamically rebinding symbols in Mach-O binaries running on iOS in the simulator and on device. This provides functionality that is similar to using [`DYLD_INTERPOSE`][interpose] on OS X. At Facebook, we've found it useful as a way to hook calls in libSystem for debugging/tracing purposes (for example, auditing for double-close issues with file descriptors).
[interpose]: http://opensource.apple.com/source/dyld/dyld-210.2.3/include/mach-o/dyld-interposing.h "<mach-o/dyld-interposing.h>"
## Usage
Once you add `fishhook.h`/`fishhook.c` to your project, you can rebind symbols as follows:
```Objective-C
#import <dlfcn.h>
#import <UIKit/UIKit.h>
#import "AppDelegate.h"
#import "fishhook.h"
static int (*orig_close)(int);
static int (*orig_open)(const char *, int, ...);
int my_close(int fd) {
printf("Calling real close(%d)\n", fd);
return orig_close(fd);
}
int my_open(const char *path, int oflag, ...) {
va_list ap = {0};
mode_t mode = 0;
if ((oflag & O_CREAT) != 0) {
// mode only applies to O_CREAT
va_start(ap, oflag);
mode = va_arg(ap, int);
va_end(ap);
printf("Calling real open('%s', %d, %d)\n", path, oflag, mode);
return orig_open(path, oflag, mode);
} else {
printf("Calling real open('%s', %d)\n", path, oflag);
return orig_open(path, oflag, mode);
}
}
int main(int argc, char * argv[])
{
@autoreleasepool {
rebind_symbols((struct rebinding[2]){{"close", my_close, (void *)&orig_close}, {"open", my_open, (void *)&orig_open}}, 2);
// Open our own binary and print out first 4 bytes (which is the same
// for all Mach-O binaries on a given architecture)
int fd = open(argv[0], O_RDONLY);
uint32_t magic_number = 0;
read(fd, &magic_number, 4);
printf("Mach-O Magic Number: %x \n", magic_number);
close(fd);
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
```
### Sample output
```
Calling real open('/var/mobile/Applications/161DA598-5B83-41F5-8A44-675491AF6A2C/Test.app/Test', 0)
Mach-O Magic Number: feedface
Calling real close(3)
...
```
## How it works
`dyld` binds lazy and non-lazy symbols by updating pointers in particular sections of the `__DATA` segment of a Mach-O binary. __fishhook__ re-binds these symbols by determining the locations to update for each of the symbol names passed to `rebind_symbols` and then writing out the corresponding replacements.
For a given image, the `__DATA` segment may contain two sections that are relevant for dynamic symbol bindings: `__nl_symbol_ptr` and `__la_symbol_ptr`. `__nl_symbol_ptr` is an array of pointers to non-lazily bound data (these are bound at the time a library is loaded) and `__la_symbol_ptr` is an array of pointers to imported functions that is generally filled by a routine called `dyld_stub_binder` during the first call to that symbol (it's also possible to tell `dyld` to bind these at launch). In order to find the name of the symbol that corresponds to a particular location in one of these sections, we have to jump through several layers of indirection. For the two relevant sections, the section headers (`struct section`s from `<mach-o/loader.h>`) provide an offset (in the `reserved1` field) into what is known as the indirect symbol table. The indirect symbol table, which is located in the `__LINKEDIT` segment of the binary, is just an array of indexes into the symbol table (also in `__LINKEDIT`) whose order is identical to that of the pointers in the non-lazy and lazy symbol sections. So, given `struct section nl_symbol_ptr`, the corresponding index in the symbol table of the first address in that section is `indirect_symbol_table[nl_symbol_ptr->reserved1]`. The symbol table itself is an array of `struct nlist`s (see `<mach-o/nlist.h>`), and each `nlist` contains an index into the string table in `__LINKEDIT` which where the actual symbol names are stored. So, for each pointer `__nl_symbol_ptr` and `__la_symbol_ptr`, we are able to find the corresponding symbol and then the corresponding string to compare against the requested symbol names, and if there is a match, we replace the pointer in the section with the replacement.
The process of looking up the name of a given entry in the lazy or non-lazy pointer tables looks like this:
![Visual explanation](http://i.imgur.com/HVXqHCz.png)

210
node_modules/react-native/Libraries/fishhook/fishhook.c generated vendored Executable file
View File

@@ -0,0 +1,210 @@
// Copyright (c) 2013, Facebook, Inc.
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name Facebook nor the names of its contributors may be used to
// endorse or promote products derived from this software without specific
// prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#import "fishhook.h"
#import <dlfcn.h>
#import <stdlib.h>
#import <string.h>
#import <sys/types.h>
#import <mach-o/dyld.h>
#import <mach-o/loader.h>
#import <mach-o/nlist.h>
#ifdef __LP64__
typedef struct mach_header_64 mach_header_t;
typedef struct segment_command_64 segment_command_t;
typedef struct section_64 section_t;
typedef struct nlist_64 nlist_t;
#define LC_SEGMENT_ARCH_DEPENDENT LC_SEGMENT_64
#else
typedef struct mach_header mach_header_t;
typedef struct segment_command segment_command_t;
typedef struct section section_t;
typedef struct nlist nlist_t;
#define LC_SEGMENT_ARCH_DEPENDENT LC_SEGMENT
#endif
#ifndef SEG_DATA_CONST
#define SEG_DATA_CONST "__DATA_CONST"
#endif
struct rebindings_entry {
struct rebinding *rebindings;
size_t rebindings_nel;
struct rebindings_entry *next;
};
static struct rebindings_entry *_rebindings_head;
static int prepend_rebindings(struct rebindings_entry **rebindings_head,
struct rebinding rebindings[],
size_t nel) {
struct rebindings_entry *new_entry = (struct rebindings_entry *) malloc(sizeof(struct rebindings_entry));
if (!new_entry) {
return -1;
}
new_entry->rebindings = (struct rebinding *) malloc(sizeof(struct rebinding) * nel);
if (!new_entry->rebindings) {
free(new_entry);
return -1;
}
memcpy(new_entry->rebindings, rebindings, sizeof(struct rebinding) * nel);
new_entry->rebindings_nel = nel;
new_entry->next = *rebindings_head;
*rebindings_head = new_entry;
return 0;
}
static void perform_rebinding_with_section(struct rebindings_entry *rebindings,
section_t *section,
intptr_t slide,
nlist_t *symtab,
char *strtab,
uint32_t *indirect_symtab) {
uint32_t *indirect_symbol_indices = indirect_symtab + section->reserved1;
void **indirect_symbol_bindings = (void **)((uintptr_t)slide + section->addr);
for (uint i = 0; i < section->size / sizeof(void *); i++) {
uint32_t symtab_index = indirect_symbol_indices[i];
if (symtab_index == INDIRECT_SYMBOL_ABS || symtab_index == INDIRECT_SYMBOL_LOCAL ||
symtab_index == (INDIRECT_SYMBOL_LOCAL | INDIRECT_SYMBOL_ABS)) {
continue;
}
uint32_t strtab_offset = symtab[symtab_index].n_un.n_strx;
char *symbol_name = strtab + strtab_offset;
if (strnlen(symbol_name, 2) < 2) {
continue;
}
struct rebindings_entry *cur = rebindings;
while (cur) {
for (uint j = 0; j < cur->rebindings_nel; j++) {
if (strcmp(&symbol_name[1], cur->rebindings[j].name) == 0) {
if (cur->rebindings[j].replaced != NULL &&
indirect_symbol_bindings[i] != cur->rebindings[j].replacement) {
*(cur->rebindings[j].replaced) = indirect_symbol_bindings[i];
}
indirect_symbol_bindings[i] = cur->rebindings[j].replacement;
goto symbol_loop;
}
}
cur = cur->next;
}
symbol_loop:;
}
}
static void rebind_symbols_for_image(struct rebindings_entry *rebindings,
const struct mach_header *header,
intptr_t slide) {
Dl_info info;
if (dladdr(header, &info) == 0) {
return;
}
segment_command_t *cur_seg_cmd;
segment_command_t *linkedit_segment = NULL;
struct symtab_command* symtab_cmd = NULL;
struct dysymtab_command* dysymtab_cmd = NULL;
uintptr_t cur = (uintptr_t)header + sizeof(mach_header_t);
for (uint i = 0; i < header->ncmds; i++, cur += cur_seg_cmd->cmdsize) {
cur_seg_cmd = (segment_command_t *)cur;
if (cur_seg_cmd->cmd == LC_SEGMENT_ARCH_DEPENDENT) {
if (strcmp(cur_seg_cmd->segname, SEG_LINKEDIT) == 0) {
linkedit_segment = cur_seg_cmd;
}
} else if (cur_seg_cmd->cmd == LC_SYMTAB) {
symtab_cmd = (struct symtab_command*)cur_seg_cmd;
} else if (cur_seg_cmd->cmd == LC_DYSYMTAB) {
dysymtab_cmd = (struct dysymtab_command*)cur_seg_cmd;
}
}
if (!symtab_cmd || !dysymtab_cmd || !linkedit_segment ||
!dysymtab_cmd->nindirectsyms) {
return;
}
// Find base symbol/string table addresses
uintptr_t linkedit_base = (uintptr_t)slide + linkedit_segment->vmaddr - linkedit_segment->fileoff;
nlist_t *symtab = (nlist_t *)(linkedit_base + symtab_cmd->symoff);
char *strtab = (char *)(linkedit_base + symtab_cmd->stroff);
// Get indirect symbol table (array of uint32_t indices into symbol table)
uint32_t *indirect_symtab = (uint32_t *)(linkedit_base + dysymtab_cmd->indirectsymoff);
cur = (uintptr_t)header + sizeof(mach_header_t);
for (uint i = 0; i < header->ncmds; i++, cur += cur_seg_cmd->cmdsize) {
cur_seg_cmd = (segment_command_t *)cur;
if (cur_seg_cmd->cmd == LC_SEGMENT_ARCH_DEPENDENT) {
if (strcmp(cur_seg_cmd->segname, SEG_DATA) != 0 &&
strcmp(cur_seg_cmd->segname, SEG_DATA_CONST) != 0) {
continue;
}
for (uint j = 0; j < cur_seg_cmd->nsects; j++) {
section_t *sect =
(section_t *)(cur + sizeof(segment_command_t)) + j;
if ((sect->flags & SECTION_TYPE) == S_LAZY_SYMBOL_POINTERS) {
perform_rebinding_with_section(rebindings, sect, slide, symtab, strtab, indirect_symtab);
}
if ((sect->flags & SECTION_TYPE) == S_NON_LAZY_SYMBOL_POINTERS) {
perform_rebinding_with_section(rebindings, sect, slide, symtab, strtab, indirect_symtab);
}
}
}
}
}
static void _rebind_symbols_for_image(const struct mach_header *header,
intptr_t slide) {
rebind_symbols_for_image(_rebindings_head, header, slide);
}
int rebind_symbols_image(void *header,
intptr_t slide,
struct rebinding rebindings[],
size_t rebindings_nel) {
struct rebindings_entry *rebindings_head = NULL;
int retval = prepend_rebindings(&rebindings_head, rebindings, rebindings_nel);
rebind_symbols_for_image(rebindings_head, (const struct mach_header *) header, slide);
free(rebindings_head);
return retval;
}
int rebind_symbols(struct rebinding rebindings[], size_t rebindings_nel) {
int retval = prepend_rebindings(&_rebindings_head, rebindings, rebindings_nel);
if (retval < 0) {
return retval;
}
// If this was the first call, register callback for image additions (which is also invoked for
// existing images, otherwise, just run on existing images
if (!_rebindings_head->next) {
_dyld_register_func_for_add_image(_rebind_symbols_for_image);
} else {
uint32_t c = _dyld_image_count();
for (uint32_t i = 0; i < c; i++) {
_rebind_symbols_for_image(_dyld_get_image_header(i), _dyld_get_image_vmaddr_slide(i));
}
}
return retval;
}

76
node_modules/react-native/Libraries/fishhook/fishhook.h generated vendored Executable file
View File

@@ -0,0 +1,76 @@
// Copyright (c) 2013, Facebook, Inc.
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name Facebook nor the names of its contributors may be used to
// endorse or promote products derived from this software without specific
// prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef fishhook_h
#define fishhook_h
#include <stddef.h>
#include <stdint.h>
#if !defined(FISHHOOK_EXPORT)
#define FISHHOOK_VISIBILITY __attribute__((visibility("hidden")))
#else
#define FISHHOOK_VISIBILITY __attribute__((visibility("default")))
#endif
#ifdef __cplusplus
extern "C" {
#endif //__cplusplus
/*
* A structure representing a particular intended rebinding from a symbol
* name to its replacement
*/
struct rebinding {
const char *name;
void *replacement;
void **replaced;
};
/*
* For each rebinding in rebindings, rebinds references to external, indirect
* symbols with the specified name to instead point at replacement for each
* image in the calling process as well as for all future images that are loaded
* by the process. If rebind_functions is called more than once, the symbols to
* rebind are added to the existing list of rebindings, and if a given symbol
* is rebound more than once, the later rebinding will take precedence.
*/
FISHHOOK_VISIBILITY
int rebind_symbols(struct rebinding rebindings[], size_t rebindings_nel);
/*
* Rebinds as above, but only in the specified image. The header should point
* to the mach-o header, the slide should be the slide offset. Others as above.
*/
FISHHOOK_VISIBILITY
int rebind_symbols_image(void *header,
intptr_t slide,
struct rebinding rebindings[],
size_t rebindings_nel);
#ifdef __cplusplus
}
#endif //__cplusplus
#endif //fishhook_h